3.50 \(\int \frac {a+b \tan ^{-1}(c x)}{x^4 (d+i c d x)} \, dx\)

Optimal. Leaf size=197 \[ \frac {i c^3 \log \left (2-\frac {2}{1+i c x}\right ) \left (a+b \tan ^{-1}(c x)\right )}{d}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}-\frac {b c^3 \text {Li}_2\left (\frac {2}{i c x+1}-1\right )}{2 d}-\frac {4 b c^3 \log (x)}{3 d}+\frac {i b c^3 \tan ^{-1}(c x)}{2 d}+\frac {i b c^2}{2 d x}+\frac {2 b c^3 \log \left (c^2 x^2+1\right )}{3 d}-\frac {b c}{6 d x^2} \]

[Out]

-1/6*b*c/d/x^2+1/2*I*b*c^2/d/x+1/2*I*b*c^3*arctan(c*x)/d+1/3*(-a-b*arctan(c*x))/d/x^3+1/2*I*c*(a+b*arctan(c*x)
)/d/x^2+c^2*(a+b*arctan(c*x))/d/x-4/3*b*c^3*ln(x)/d+2/3*b*c^3*ln(c^2*x^2+1)/d+I*c^3*(a+b*arctan(c*x))*ln(2-2/(
1+I*c*x))/d-1/2*b*c^3*polylog(2,-1+2/(1+I*c*x))/d

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 17, number of rules used = 11, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {4870, 4852, 266, 44, 325, 203, 36, 29, 31, 4868, 2447} \[ -\frac {b c^3 \text {PolyLog}\left (2,-1+\frac {2}{1+i c x}\right )}{2 d}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}+\frac {i c^3 \log \left (2-\frac {2}{1+i c x}\right ) \left (a+b \tan ^{-1}(c x)\right )}{d}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {2 b c^3 \log \left (c^2 x^2+1\right )}{3 d}+\frac {i b c^2}{2 d x}-\frac {4 b c^3 \log (x)}{3 d}+\frac {i b c^3 \tan ^{-1}(c x)}{2 d}-\frac {b c}{6 d x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTan[c*x])/(x^4*(d + I*c*d*x)),x]

[Out]

-(b*c)/(6*d*x^2) + ((I/2)*b*c^2)/(d*x) + ((I/2)*b*c^3*ArcTan[c*x])/d - (a + b*ArcTan[c*x])/(3*d*x^3) + ((I/2)*
c*(a + b*ArcTan[c*x]))/(d*x^2) + (c^2*(a + b*ArcTan[c*x]))/(d*x) - (4*b*c^3*Log[x])/(3*d) + (2*b*c^3*Log[1 + c
^2*x^2])/(3*d) + (I*c^3*(a + b*ArcTan[c*x])*Log[2 - 2/(1 + I*c*x)])/d - (b*c^3*PolyLog[2, -1 + 2/(1 + I*c*x)])
/(2*d)

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2447

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[(Pq^m*(1 - u))/D[u, x]]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 4852

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTa
n[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTan[c*x])^(p - 1))/(1 + c^
2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 4868

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[((a + b*ArcTan[c*x]
)^p*Log[2 - 2/(1 + (e*x)/d)])/d, x] - Dist[(b*c*p)/d, Int[((a + b*ArcTan[c*x])^(p - 1)*Log[2 - 2/(1 + (e*x)/d)
])/(1 + c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]

Rule 4870

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Dist[1/d, I
nt[(f*x)^m*(a + b*ArcTan[c*x])^p, x], x] - Dist[e/(d*f), Int[((f*x)^(m + 1)*(a + b*ArcTan[c*x])^p)/(d + e*x),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {a+b \tan ^{-1}(c x)}{x^4 (d+i c d x)} \, dx &=-\left ((i c) \int \frac {a+b \tan ^{-1}(c x)}{x^3 (d+i c d x)} \, dx\right )+\frac {\int \frac {a+b \tan ^{-1}(c x)}{x^4} \, dx}{d}\\ &=-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}-c^2 \int \frac {a+b \tan ^{-1}(c x)}{x^2 (d+i c d x)} \, dx-\frac {(i c) \int \frac {a+b \tan ^{-1}(c x)}{x^3} \, dx}{d}+\frac {(b c) \int \frac {1}{x^3 \left (1+c^2 x^2\right )} \, dx}{3 d}\\ &=-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}+\left (i c^3\right ) \int \frac {a+b \tan ^{-1}(c x)}{x (d+i c d x)} \, dx+\frac {(b c) \operatorname {Subst}\left (\int \frac {1}{x^2 \left (1+c^2 x\right )} \, dx,x,x^2\right )}{6 d}-\frac {c^2 \int \frac {a+b \tan ^{-1}(c x)}{x^2} \, dx}{d}-\frac {\left (i b c^2\right ) \int \frac {1}{x^2 \left (1+c^2 x^2\right )} \, dx}{2 d}\\ &=\frac {i b c^2}{2 d x}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}+\frac {i c^3 \left (a+b \tan ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+i c x}\right )}{d}+\frac {(b c) \operatorname {Subst}\left (\int \left (\frac {1}{x^2}-\frac {c^2}{x}+\frac {c^4}{1+c^2 x}\right ) \, dx,x,x^2\right )}{6 d}-\frac {\left (b c^3\right ) \int \frac {1}{x \left (1+c^2 x^2\right )} \, dx}{d}+\frac {\left (i b c^4\right ) \int \frac {1}{1+c^2 x^2} \, dx}{2 d}-\frac {\left (i b c^4\right ) \int \frac {\log \left (2-\frac {2}{1+i c x}\right )}{1+c^2 x^2} \, dx}{d}\\ &=-\frac {b c}{6 d x^2}+\frac {i b c^2}{2 d x}+\frac {i b c^3 \tan ^{-1}(c x)}{2 d}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}-\frac {b c^3 \log (x)}{3 d}+\frac {b c^3 \log \left (1+c^2 x^2\right )}{6 d}+\frac {i c^3 \left (a+b \tan ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+i c x}\right )}{d}-\frac {b c^3 \text {Li}_2\left (-1+\frac {2}{1+i c x}\right )}{2 d}-\frac {\left (b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (1+c^2 x\right )} \, dx,x,x^2\right )}{2 d}\\ &=-\frac {b c}{6 d x^2}+\frac {i b c^2}{2 d x}+\frac {i b c^3 \tan ^{-1}(c x)}{2 d}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}-\frac {b c^3 \log (x)}{3 d}+\frac {b c^3 \log \left (1+c^2 x^2\right )}{6 d}+\frac {i c^3 \left (a+b \tan ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+i c x}\right )}{d}-\frac {b c^3 \text {Li}_2\left (-1+\frac {2}{1+i c x}\right )}{2 d}-\frac {\left (b c^3\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )}{2 d}+\frac {\left (b c^5\right ) \operatorname {Subst}\left (\int \frac {1}{1+c^2 x} \, dx,x,x^2\right )}{2 d}\\ &=-\frac {b c}{6 d x^2}+\frac {i b c^2}{2 d x}+\frac {i b c^3 \tan ^{-1}(c x)}{2 d}-\frac {a+b \tan ^{-1}(c x)}{3 d x^3}+\frac {i c \left (a+b \tan ^{-1}(c x)\right )}{2 d x^2}+\frac {c^2 \left (a+b \tan ^{-1}(c x)\right )}{d x}-\frac {4 b c^3 \log (x)}{3 d}+\frac {2 b c^3 \log \left (1+c^2 x^2\right )}{3 d}+\frac {i c^3 \left (a+b \tan ^{-1}(c x)\right ) \log \left (2-\frac {2}{1+i c x}\right )}{d}-\frac {b c^3 \text {Li}_2\left (-1+\frac {2}{1+i c x}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.14, size = 254, normalized size = 1.29 \[ \frac {6 i a c^3 x^3 \log (x)+6 i a c^3 x^3 \log \left (\frac {2 i}{-c x+i}\right )+6 a c^2 x^2+3 i a c x-2 a-3 b c^3 x^3 \text {Li}_2(-i c x)+3 b c^3 x^3 \text {Li}_2(i c x)-3 b c^3 x^3 \text {Li}_2\left (\frac {c x+i}{c x-i}\right )-8 b c^3 x^3 \log (x)+6 i b c^3 x^3 \log \left (\frac {2 i}{-c x+i}\right ) \tan ^{-1}(c x)+3 i b c^2 x^2 \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};-c^2 x^2\right )+6 b c^2 x^2 \tan ^{-1}(c x)+4 b c^3 x^3 \log \left (c^2 x^2+1\right )-b c x+3 i b c x \tan ^{-1}(c x)-2 b \tan ^{-1}(c x)}{6 d x^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcTan[c*x])/(x^4*(d + I*c*d*x)),x]

[Out]

(-2*a + (3*I)*a*c*x - b*c*x + 6*a*c^2*x^2 - 2*b*ArcTan[c*x] + (3*I)*b*c*x*ArcTan[c*x] + 6*b*c^2*x^2*ArcTan[c*x
] + (3*I)*b*c^2*x^2*Hypergeometric2F1[-1/2, 1, 1/2, -(c^2*x^2)] + (6*I)*a*c^3*x^3*Log[x] - 8*b*c^3*x^3*Log[x]
+ (6*I)*a*c^3*x^3*Log[(2*I)/(I - c*x)] + (6*I)*b*c^3*x^3*ArcTan[c*x]*Log[(2*I)/(I - c*x)] + 4*b*c^3*x^3*Log[1
+ c^2*x^2] - 3*b*c^3*x^3*PolyLog[2, (-I)*c*x] + 3*b*c^3*x^3*PolyLog[2, I*c*x] - 3*b*c^3*x^3*PolyLog[2, (I + c*
x)/(-I + c*x)])/(6*d*x^3)

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \log \left (-\frac {c x + i}{c x - i}\right ) - 2 i \, a}{2 \, c d x^{5} - 2 i \, d x^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(d+I*c*d*x),x, algorithm="fricas")

[Out]

integral((b*log(-(c*x + I)/(c*x - I)) - 2*I*a)/(2*c*d*x^5 - 2*I*d*x^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(d+I*c*d*x),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [B]  time = 0.08, size = 369, normalized size = 1.87 \[ -\frac {a}{3 d \,x^{3}}+\frac {i c a}{2 d \,x^{2}}+\frac {i c b \arctan \left (c x \right )}{2 d \,x^{2}}+\frac {c^{2} a}{d x}+\frac {i c^{3} b \arctan \left (c x \right ) \ln \left (c x \right )}{d}+\frac {c^{3} a \arctan \left (c x \right )}{d}-\frac {b \arctan \left (c x \right )}{3 d \,x^{3}}+\frac {i b \,c^{2}}{2 d x}+\frac {i b \,c^{3} \arctan \left (c x \right )}{2 d}+\frac {c^{2} b \arctan \left (c x \right )}{d x}+\frac {i c^{3} a \ln \left (c x \right )}{d}-\frac {c^{3} b \ln \left (c x -i\right ) \ln \left (-\frac {i \left (c x +i\right )}{2}\right )}{2 d}-\frac {c^{3} b \dilog \left (-\frac {i \left (c x +i\right )}{2}\right )}{2 d}+\frac {c^{3} b \ln \left (c x -i\right )^{2}}{4 d}-\frac {c^{3} b \ln \left (c x \right ) \ln \left (i c x +1\right )}{2 d}+\frac {c^{3} b \ln \left (c x \right ) \ln \left (-i c x +1\right )}{2 d}-\frac {c^{3} b \dilog \left (i c x +1\right )}{2 d}+\frac {c^{3} b \dilog \left (-i c x +1\right )}{2 d}-\frac {i c^{3} b \arctan \left (c x \right ) \ln \left (c x -i\right )}{d}-\frac {b c}{6 d \,x^{2}}-\frac {4 c^{3} b \ln \left (c x \right )}{3 d}+\frac {2 b \,c^{3} \ln \left (c^{2} x^{2}+1\right )}{3 d}-\frac {i c^{3} a \ln \left (c^{2} x^{2}+1\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctan(c*x))/x^4/(d+I*c*d*x),x)

[Out]

-1/3*a/d/x^3+1/2*I*c*a/d/x^2+1/2*I*c*b/d*arctan(c*x)/x^2+c^2*a/d/x+I*c^3*b/d*arctan(c*x)*ln(c*x)+c^3*a/d*arcta
n(c*x)-1/3*b/d*arctan(c*x)/x^3+1/2*I*b*c^2/d/x+1/2*I*b*c^3*arctan(c*x)/d+c^2*b/d*arctan(c*x)/x+I*c^3*a/d*ln(c*
x)-1/2*c^3*b/d*ln(c*x-I)*ln(-1/2*I*(I+c*x))-1/2*c^3*b/d*dilog(-1/2*I*(I+c*x))+1/4*c^3*b/d*ln(c*x-I)^2-1/2*c^3*
b/d*ln(c*x)*ln(1+I*c*x)+1/2*c^3*b/d*ln(c*x)*ln(1-I*c*x)-1/2*c^3*b/d*dilog(1+I*c*x)+1/2*c^3*b/d*dilog(1-I*c*x)-
I*c^3*b/d*arctan(c*x)*ln(c*x-I)-1/6*b*c/d/x^2-4/3*c^3*b/d*ln(c*x)+2/3*b*c^3*ln(c^2*x^2+1)/d-1/2*I*c^3*a/d*ln(c
^2*x^2+1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{6} \, {\left (\frac {6 i \, c^{3} \log \left (i \, c x + 1\right )}{d} - \frac {6 i \, c^{3} \log \relax (x)}{d} - \frac {6 \, c^{2} x^{2} + 3 i \, c x - 2}{d x^{3}}\right )} a + {\left (-i \, c \int \frac {\arctan \left (c x\right )}{c^{2} d x^{5} + d x^{3}}\,{d x} + \int \frac {\arctan \left (c x\right )}{c^{2} d x^{6} + d x^{4}}\,{d x}\right )} b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctan(c*x))/x^4/(d+I*c*d*x),x, algorithm="maxima")

[Out]

-1/6*(6*I*c^3*log(I*c*x + 1)/d - 6*I*c^3*log(x)/d - (6*c^2*x^2 + 3*I*c*x - 2)/(d*x^3))*a + (-I*c*integrate(arc
tan(c*x)/(c^2*d*x^5 + d*x^3), x) + integrate(arctan(c*x)/(c^2*d*x^6 + d*x^4), x))*b

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {atan}\left (c\,x\right )}{x^4\,\left (d+c\,d\,x\,1{}\mathrm {i}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atan(c*x))/(x^4*(d + c*d*x*1i)),x)

[Out]

int((a + b*atan(c*x))/(x^4*(d + c*d*x*1i)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atan(c*x))/x**4/(d+I*c*d*x),x)

[Out]

Timed out

________________________________________________________________________________________